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SUMMARY 
A discrete Galerkin boundary element technique with a quadratic approximation of the variables was 
developed to simulate the three-dimensional (3D) viscous flow established in periodic assemblages of 
particles in suspensions and within a periodic porous medium. The Batchelor's unit-cell approach is used. 
The Galerkin formulation effectively handles the discontinuity in the traction arising in flow boundaries 
with edges or corners, such as the unit cell in this case. For an ellipsoidal dilute suspension over the range 
of aspect ratio studied (1 to 54), the numerical solutions of the rotational velocity of the particles and the 
viscosity correction were found to agree with the analytic values within 0.2% and 2% respectively, even 
with coarse meshes. In a suspension of cylindrical particles the calculated period of rotation agreed with 
the experimental data. However, Burgers' predictions for the correction to the suspension viscosity were 
found to be 30% too low and therefore the concept of the equivalent ellipsoidal ratio is judged to be 
inadequate. For pressure-driven flow through a fixed bed of fibres, the prediction on the permeability was 
shown to deviate by as much as 10% from the value calculated based on approximate permeability 
additivity rules using the corresponding values for planar flow past a periodic array of parallel cylinders. 
These applications show the versatility of the technique for studying viscous flows in complicated 3D 
geometries. 

K E Y  WORDS Galerkin bounday element method Unit-cell approach Traction discontinuities Suspension rheolo- 
gy High fibre aspect ratio flow through a porous medium 

INTRODUCTION 

Since the pioneering work of Youngren and Acrivos,' the use of the boundary element method 
(BEM) in the approximation of multidimensional Stokes flow has increased greatly, as demon- 
strated by the plethora of articles that have appeared in the literature on this subject-for 
example, see the two recent textbooks by Kim and Karrila' and Pozrikidis' and references cited 
therein. The interest in the BEM stems from the reduction of the dimensionality of the problem 
accomplished through the use of a boundary integral formulation which leads to reduced CPU 
and storage requirements. This algorithmic development in the solution of multidimensional 
Stokes equations, in conjunction with the use of faster and bigger computers, recently allowed 
the evaluation of the flow field within geometries of such complexity as, for example, encountered 
in the flows of multiparticle systems,"6 extrusion' and mixing' applications. 
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Solving Stokes flow problems is only one of the many applications of the BEM in the solution 
of systems of linear partial differential equations (PDEs). The general theory of the BEM can 
be found in several In the last 15 years the BEM has become the method of choice 
for a variety of problems involving complex domain boundaries, ranging from electrostatics to 
elasticity and viscous flows. Despite this, the mathematical theory of BEM approximations still 
lags compared with the more classical approaches represented by the finite differerence and finite 
element methods. Indeed, a general theory of error estimation for three-dimensional (3D) 
collocation BEM approximations is still lacking.' ' Even for two-dimensional (2D) problems no 
collocation convergence results are available for problems involving domains with corners, mixed 
boundary value problems or boundary integral equations of different orders.' ' Only the theory 
of convergence and error estimates for the Galerkin BEM is well developed,'2-16 but even there 
the question of whether the convergence can be observed in practice, especially with integral 
equations of the first kind which result in linear equations with a high condition number, is still 
unresolved.' 7 * 1  

Of particular interest to the numerical analyst is the understanding of how in practice the 
various factors affecting the numerical error (such as the numerical approximation of the surface, 
the nature of the basis functions, the numerical evaluation of the integrals, etc.) influence the 
convergence characteristics. Numerical experiments aiming to demonstrate the convergence 
characteristics of the BEM are the only means to demonstrate in practice the performance of 
this computational technique. Given the limited availability of computational resources, this 
information is crucial in order to select the optimum values for the numerical parameters which 
determine the distribution of the workload among the two principal computational tasks: the 
numerical integration and the solution of linear equations. 

The task of optimizing the numerical implementation of the BEM becomes difficult if one 
considers the fact that there is (in general) more than one possible boundary integral representa- 
tion for any given problem and that for each such representation there are several numerical 
formulations. The boundary integral formulations are primarily characterized by the nature of 
the resulting Fredholm integral equations, which are of the first or second kind. The integral 
equations of the second kind are numerically stable and hence tend to be preferred in engineering 
applications. However, in this formulation all the essential properties of the original elliptical 
operators such as symmetry, coerciveness and variational form are generally not preserved.' 
Since these properties help establish the existence and uniqueness of the exact solution, it may be 
particularly important to preserve these properties in cases where compatibility with the more 
traditional techniques, such as finite elements of the corresponding elliptical operators, is 
sought.I8 On the other hand, it is a well-known fact that Fredholm equations of the first kind 
are poorly conditioned, i.e. the solution usually leads to a system of linear equations with high 
condition numbers, especially when a large number of elements are used. However, as can be 
shown (analytically in certain situations18 and numerically in others2'), this deficiency does not 
necessarily prohibit the attainment of good accuracy with finite size discretizations with the 
integral equations of the first kind. 

More specifically, for the 3D Stokes problem the Green function approach leads to Fredholm 
integral equations of the first kind (when velocity values are prescribed along the system 
boundary), whereas the double-layer potential approach results in Fredholm integral equations 
of the second kind. In this paper the focus is only on the first approach, which is amenable to 
the use of engineering quantities such as the velocities and the tractions as the primary variables.' 
The interested reader is referred to two recent texts for additional information on the second 
a p p r ~ a c h . ~ . ~  Although we hope that the conclusions from our investigations can also be of 
relevance to other BEM applications corresponding to other formulations or even different 
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problems, the present work focuses, for practical reasons, on the investigation of a special issue. 
This is the numerical implementation of the piecewise Lagrangian interpolation of the Green 
function solution to the 3D Stokes flow. 

The goal of the present work was to implement a second-order discontinuous polynomial 
approximation to the Galerkin boundary element formulation for 3D viscous (Stokes) flow 
confined by non-smooth boundaries. Such problems arise frequently in engineering practice. 
Non-smooth boundaries such as corners and edges are not only encountered in flows around 
blunt objects (such as cubes, cylindrical particles of finite aspect ratio, etc.) but also when periodic 
flow problems are simulated through the use of the unit-cell technique.2'*22 So far, only low-order 
collocation boundary element (constant element) formulations have been used to approximate 
3D periodic viscous necessitating a large number of unknowns to obtain accurate results. 
The need to expand the user of higher-order approximations to such problems was the 
motivation behind the present work. 

A barrier towards the efficient numerical implementation of a high-order Galerkin boundary 
element method to problems involving discontinuous tractions at the boundaries, such as those 
encountered in domains involving corners, has been the accurate numerical evaluation of nearly 
singular integrals. These are the type of integrals encountered in the boundary integral 
formulation of the Stokes equations for points of reference which lie close to but out of the plane 
of the element under consideration. Their accurate and efficient numerical evaluation is crucial 
for the convergence of the BEM. The enabling technique to achieve this task, relying on an 
adaptive evaluation technique through domain subdivision, has been recently developed in our 
previous paper.20 A second-order collocation boundary element technique has been successfully 
tested in the evaluation of the flow field around spherical and ellipsoidal particles at close 
proximity (at distances down to 001 % of the particle diameter). The same technique of numerical 
integration is used in the present work in order to implement a discrete Galerkin formulation 
of the boundary element approximation of flows within or around domains involving edges and 
corners. 

The (continuous) Galerkin approach has seldom been used since it requires the analytical 
evaluation of complex integral expressions which are only available for a very limited class of 
equations, surfaces (2D) and numerical approximations. However, recent theoretical develop- 
ments have shown that the necessary integrals can be evaluated numerically with no loss in 
accuracy, at least for a range of smooth 2D  problem^.'^.^^ Indeed, for specific kernerls the 
numerical integration rules can be sufficiently well tuned to lead to an even higher order of 
convergence (superconvergence) than the corresponding continuous Galerkin approach.24 The 
corresponding methods can be distinguished based on how the integrals are evaluated: in discrete 
Galerkin the integrals are evaluated through the use of Gaussian q ~ a d r a t u r e ; ' ~  in Galerkin 
collocation the lower-continuity finite element trial functions are used;23 in qualocation a special 
weighting and specific collocation points are used.24 Among those techniques the most general 
one (and the one employed in this work) is the discrete Galerkin. 

The discrete Galerkin technique, similar to the (continuous) Galerkin technique, has not been 
used often in engineering  application^,^*^' primarily because of its increased computational 
requirements as compared with the collocation technique. The high computational requirements 
arise because the Galerkin approach requires an additional integration of the governing 
equations, as opposed to the collocation method where the governing equations are simply 
evaluated at the nodal points. When this additional integration is implemented numerically 
through a Gauss quadrature, it necessitates the evaluation of the boundary integral equations 
at more points, as compared with the nodal locations. This translates into an increased 
computational load for the construction of the governing equations. However, as parallel 
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computers become more established as the new computational environment, this drawback of 
Galerkin techniques will be partially alleviated and the higher accuracy of the Galerkin method 
will become more attractive. Since the numerical integration can be parallelized effortlessly with 
100% efficiency,26 the less efficiently parallelized solution of linear equations through LU 
decomposition will become more important in determining the computational requirements of 
the method. 

The major motivation for the use of a Galerkin approach in the present work is the natural 
capability it offers in the handling of discontinuities in the variables, in particular those 
encountered in the tractions induced by a discontinuous change in the normal vectors around 
edges and corners. For flows involving boundaries with geometrical discontinuities, the accuracy 
of the BEM collocation computations generally declines, though reportedly only at the local 
level.3 In a recent book by Pozrikidisj it is noted that: ‘Higdon2’ and Pozrikidis2* found that 
that the presence of sharp corners neither decrases the global accuracy nor discredits the overall 
liability of boundary element computations. On the other hand, K e l m a n ~ o n ~ ~ * ~ ~  found that 
discontinuous boundary velocities might cause oscillatory solutions and slow convergence’. One 
way to avoid excessive error is through adaptive mesh refinement, though this is not always a 
cure for the p r ~ b l e m . ’ ~ * ~ ~  Another way is that whenever the singular part is known, subtract it 
from the s o l ~ t i o n . ~  However, these asymptotic solutions are seldom available and are primarily 
restricted to 2D flows3 

The presence of a boundary discontinuity (corner or edge) frequently causes the main problem, 
which is the discontinuity in the fluxes at those locations due to the discontinuous change in 
the direction of the normal vector. Traditionally, corners are handled within a collocation 
implementation of the boundary element method by shifting the nodal points from the edges of 
the adjacent to the corner elements, thus allowing the fluxes to be discontinuous at  the corner.2 
Although this approach is found to work satisfactorily, its numerical implementation is quite 
restrictive since it does not permit uniform mesh refinement (see discussion below). On the other 
hand, the handling of corner or edge singularities within the context of a Galerkin approach is 
straightforward and naturally follows the general rule of the method, which is simply extended 
to a discontinuous representation of the variables at the corner or edge under consideration. As 
long as no derivatives of the variables in question are involved in the formulation, which is duly 
satisfied in the case of the BEM, the Galerkin weighted residual equations can be formed equally 
well whether or not there is discontinuity. This is the approach followed here, thus opening new 
possibilities for the application of BEM techniques in flows through a porous medium, 
suspension rheology and in general areas where periodicity is assumed and the resulting 
calculations are based on a unit-cell approach involving corners by necessity. 

The examples presented in this work involve corners or geometric discontinuities encountered 
in composite materials processing flows. Two types of problems are solved. The first one deals 
with a suspension of ellipsoids where the ellipsoids may move and rotate when the Newtonian 
fluid flows across them. Usually the orientation state and the rheological properties of such 
flowing suspensions are of interest and are continuously changing. We calculated these variables 
of interest using the developed BEM method. The second problem is presented to emphasize 
the versatility of the method and to exhibit the potential in handling intrinsically complex 
surfaces, e.g. flow through a fixed bed of fibres. Here the fibres are continuous, form a fixed 
network and may contain many geometric discontinuities. The pressure-driven flow through a 
porous medium is solved and the permeability of the medium is evaluated. Some of the results 
are compared with available analytic solutions to verify the numerical solution, while other 
results reveal the shortcomings of the assumptions made in order to simplify the equations in 
the quest to obtain a closed-form solution. 
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Next we discuss the important features of the numerical formulation, such as integral 
evaluation and the handling of corners and edges, and describe previous failed collocation 
attempts and the current successful approach. The section of results tabulates the convergence 
studies in smooth problems of two spheres where the analytic solution is available. Then the 
results and discussion for flow of dilute suspensions and flow across a periodic porous medium 
are presented. 

FORMULATION 

Stokes flow 

The Stokes flow over a domain Q past an arbitrary particle with surface r is described by 

v - u  = 0, 0 = - v p  + pvzu, (1) 
where u is the velocity vector, p is the pressure and p is the viscosity. Note that only the pressure 
and viscous terms are retained in the momentum equations. As shown in Figure 1, there are in 
general two boundary conditions, 

u = U  o n r , ,  q = q  on r2, (2) 
where q = u - n is the traction on the particle surface, u is the stress tensor and n is the outward 
normal. 

The solution to the Stokes problem can be reduced to the solution of a set of integral 
equations’ 

r r 

where 

- 1.0 if point y is inside Q, 
-0-5 
0.0 if point y is outside Q 

if point y is on r, 

Figure 1. Boundary conditions in the boundary integral method 
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for a smooth boundary and where Einstein’s implicit summation notation over repeated indices 
is used. The functions u$ and a $ k  are the fundamental solution to equation (3)  and for flow in 
an unbounded domain are given by3‘ 

1 6r i r j rk  
cJ*. ( , z) = - -, 

‘Ik gn. ,.5 

(4) 

(5 )  

where rz  = r * r and r(y, z) = z - y. Physically U$ represents the ith component of velocity at 
point z due to a point force in the j-direction applied at point y. 

In the BEM the functions u and q are discretized and expressed as linear combinations of the 
interpolation functions ( p k ,  weighted by the nodal values: 

m 

u(6) = c ( P k u k ,  
k =  1 

where q k  is a piecewise continuous interpolation function and m depends on the order of 
interpolation function and the type of element used (quadrilateral or triangular). In general 
interpolation function can be zeroth-order (constant), first-order (linear), second-order (quadra- 
tic) or higher-order. The higher-order functions approximate the curvature of the variables better, 
thus improving the ac~uracy.~’  Similarly the domain geometry can be approximated as 

where @k is also a piecewise continuous interpolation function. If (p and @ are of the same order, 
the discretization is said to be ‘isoparametric’. Although an isoparametric discretization has 
been used in the present work, we found higher accuracy using a superparametric (order of 
8 > cp) discretization.” 

In the collocation BEM the unknown nodal values are evaluated by solving a set of linear 
equations generated by writing equation (3) at each point. At the ith nodal point equation (3) 
in discretized form becomes 

where N is the total number of elements in the problem. Equation (9) can be rearranged in the 
form 

HuG = GqG, (10) 

where H and G are 3M x 3M influence matrices and uG and qG are the global velocity and 
traction vectors of size 3M.  M is the total number of nodes. Note that H and G depend only 
on the particle geometry and not on the boundary conditions. 
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The unit-cell approach 

within a volume V is given by 
Batchelor” showed that the particle extras stress, or the stress contributed by the particles, 

1 N, 
o$l = fr [aik(xj - xCj)”nk - p(uinj  + ujni) ]  d r ,  

where the integral is taken over the surface r of each particle c1 and the summation is over all 
N ,  particles in the volume. The fluid is considered to be statistically homogeneous and oiknk is 
the force per unit area acting on the particle surface by the surrounding fluid. The vector x - x, 
denotes the positional vector of a point on the surface measured from xc, the centroid of the 
particle. 

The term ‘unit-cell approach’ is not new-it has been referenced in the early editions of the 
classic book by Happel and B r e n n e ~ - . ~ ~  For a periodic suspension equation (11) can be simplified 
by noting that the second term in square brackets cancels out. Thus 

where I/ is the unit cell described in equation (11). Equation (12) was used in postprocessing to 
evaluate the particle extra stress. 

The unit-cell formalism is extremely powerful since it reduces a numerical problem containing 
thousands of particles to one containing only a few particles as shown in Figure 2. Using 
Batchelor’s unit-cell model, the rheology of a suspension can be determined from the stress 
distribution on the particle surface. If the stress on a set of particles in a given configuration of 
the particles and for an imposed flow field is determined, the rheology of such a suspension can 
be found readily through the use of equation (12). However, it is important to remember the 

\ 
\ 
\ 

\ \ \ 

Figure 2. Simulation of an infinite suspension of fibers using an array of identical unit cells 
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assumption that the configuration used is representative of the actual particle configurations 
encountered during the flow. The properly evaluated stresses should involve taking an ensemble 
average, i.e. an average over all the different configurations weighted by the probability of their 
occurrence. Hence, the choice of the particle configuration is critical and a knowledge (or a 
model) of the configuration distribution is needed. The volume V should contain a representative 
sample of the particles such that the variation in local statistical properties of the suspension 
over V is negligible. 

A unit cell is assumed to be periodically repeated in all three directions. For simple shear flow 
the periodic boundary conditions are similar to those used by Tran-Cong et al.,’ except that in 
this study periodicity is prescribed in all directions. Consider a unit cell with dimensions 
2L, x 2L2 x 2L3 with the origin placed at the centroid of the cell: 

u(-L,, x2, x3) = u (Ll, x2, x3), 

u(x1, -L2, x3) = u (x1, L2, 4, 
U(X1, x2, -L3) = u (XI, x2, L3), 

u(_+L,, +L2, L3) = U(L3), 

a(-L,, x2, x3) = Q (Ll, x2, XJ, 
4x1, -L2, x3) = rJ (x1, L2, x31, 

4x1, x2, -J4 = a (xl, x2, L3) (13) 

(14) 

To impose shear flow, the velocities are prescribed only at the corners of the unit cell: 

u(+L,, +L*, -L3) = U(-L,). 

Since q = cr - n and the surfaces within each pair of periodic surfaces have opposite directions 
of n, periodicity implies that the tractions will be opposite in directions: 

q(-L,, x2, x3) = -q(L,, x2, qb,, -L2, x3) = -q(x,, L,, X3h 

q(x1, x2, -L3) = -dX,, x2, L3). (15) 

At any node on a surface where periodicity applies, say (L, ,  x2, x3), neither u nor q is known. 
Thus there are three equations generated from the integral equation at this node but there are 
six unknowns (three components of u and three of q). The same can be said about its periodic 
node partner at ( -L, ,  x2, x3). The six extra equations required to remove this indeterminancy 
are provided by the boundary conditions: the three u-equations in (13) and the three q-equations 
in (15). 

For Poiseuille flow the handling of the periodic boundary conditions is similar. Only the 
periodic boundary condition for the stress in the direction of the pressure drop needs to be 
modified. We chose x, as the direction for pressure drop and flow; hence the only boundary 
condition that will be different from equation (13) is 

o(-Li, ~ 2 ,  ~ 3 )  - dL1, ~ 2 ,  ~ 3 )  = (AP,O,O)~, 

Q(-L,,  x2, x3) + Q W , ,  x2, x3) = ( -Ap,ON,  

(16) 
where Ap = plXl==, - pix, = - L I .  In this case the tractions will be given by 

q(x1, -L2, x3) = -q(x1, L2, XA, dx,, x2, -L3) = - q h ,  x2, L3). (17) 

The formulation presented here can be used to handle particles of arbitrary shapes in arbitrary 
configurations. Alternatively, Zick and H ~ m s y ~ ~  developed a special fundamental solution that 
explicitly accounts for the periodicity. This special solution is less general since it depends on 
the configuration of the unit cell. Also, this special solution involves a summation over all 
particles in the particle lattice and therefore does not accommodate the splitting of the original 
domain for computational efficiency. 
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Handling of traction discontinuities at edges and corners 

The second-order method employs quadratic elements, as compared with the Tran-Cong et 
aL4v5 approach of using constant elements. Since in a quadratic element the unknowns are placed 
on the edges of the element, some of the unknowns are assigned at the edges of the unit cell 
(see Figure 3). This poses a special challenge in numerical implementation, since two (or three) 
unknowns can exist at the same node on the edge (or at the corner) of the unit cell. When the 
unknowns are all velocities, these unknowns are required to have the same value owing to the 
continuity of the variable in the quadratic element. Thus the number of unknowns is reduced. 
On the other hand, when some of the unknowns at the same node are tractions, the situation 
becomes more difficult. Recall that traction q = CJ n. The unknowns at the same node correspond 
to different directions of n and the unknowns in general are not equal. Hence there are more 
unknowns than equations rendering the G-matrix singular. This problem of multiple unknowns 
at  the same node also exist when using the BEM to solve 2D physical problems, in which case 
at the corners of the domain there are two unknowns per corner node. 

The handling of traction discontinuities at the edges/corners is critical for the numerical 
solution, hence the treatment of the periodic boundary conditions requires special care. Yan and 
Lin3’ discussed some of the solutions to treat the corners. 

1. 

2. 

3. 

4. 

5.  

6. 

Assume that the traction is continuous at corners, so only one unknown traction needs to 
be determined. 
Allow a gap between the elements around the corner (Figure 4(a). Thus the boundary of 
the flow domain is discontinuous. The gap is usually small, so reasonable accuracy is 
obtained. 
Split the corner into two nodes, with each moved a small distance away from the corner 
(Figure 4(b). The value at  the corner is then extrapolated from the nodal values. 
Use constant elements near edges/corners (Figure 4(c) and higher-order elements every- 
where else. Link elements are needed to connect constant elements to higher-order elements. 
Use a so-called boundary point element which is essentially a modified linear element with 
two nodes but zero length. With the two nodes the two tractions can be determined. 
Gray36 used additional collocation nodes to generate the extra equations. They can be 
placed outside the fluid domain, so the LHS of the integral equation (3) is zero. The exact 
locations of the extra nodes are critical and can only be found from numerical experiments. 

Figure 3. Existence of multiple unknowns at the edges and corners of the unit cell. Here the surfaces of the unit cell 
are slightly displaced to show the location of the unknowns 
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I .-----. 
(a) a gap between elements (b) comer splitting 

t i quadratic element 

constant element 

quadratic constant 
element element 

(c) mixed quadratic-constant element 

Figure 4. Treatment of corners: (a) a gap between elements-the dotted line shows the actual boundary of the domain; 
(b) corner splitting; (c) mixed order of elements 

The above discussion pertains to applications in 2D physical problems. By comparison, less 
work has been done on 3D physical problems, but similar schemes are usually recommended. 
The cases of a simple shear and a Poiseuille flow field were used to test the usefulness of these 
approaches. The condition numbers and errors for the approaches tried are given in Table I. 
The first approach was not tried in this study since it is clearly unacceptable. The second 
approach was also not tried since the solution accuracy depends significantly on the gap size, 
which cannot be optimized a priori, 

For approach # 3 there are two possible ways of implementation. First, the edgelcorner nodes 
can be moved along the edge as shown in Figure 5. The G-matrix was found to be singular 
irrespective of how the nodes are moved. A check revealed that the two sides of the discretized 
integral equation (10) did not match. Further investigation showed that the unknowns go 

Table I .  Condition numbers and errors in the various approaches tried to handle 
edges/corners 

Condition 
Approach Description number Error* 

# 3a Move nodes along edges 10'8 10" 
# 3b Move nodes inwards towards inside 107 10-4 
# 6  Use additional collocation nodes 10'0- 1018  102-10'0 
# 7  Galerkin BEM 107 10-4 

* Errors were measured by the L,-norm. 
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Figure 5. The two implementations of approach # 3  in the treatment of corners: (a) nodes are moved along the edges; 
(b) nodes are moved inwards towards the interior 

through a jump in values when one moves the node from one surface to the next. This jump 
can be determined analytically and the procedures are given in Reference 37. After this 
adjustment the two sides of the integral equations were shown to agree within in the two 
test cases of shear and Poiseuille flow. However, even then the condition number of the resulting 
matrix G was still very high. In fact, the existence of such a high condition number should not 
be surprising; locally there are more equations than unknowns. 

In the second implementation of approach # 3  the nodes from the edges/corners are moved 
inwards towards the inside of the element. This approach is very similar to the quarter-point 
technique in finite element technology used for handling local singular variables. In the FEM 
it has been demonstrated in quadrilateral elements that placing the node one-quarter away from 
the singularity point yields the best results (see e.g. Reference 38). This scheme was tried on the 
simple mesh shown in Figure 5 and was shown to provide very good accuracy-the tractions 
in the shear flow test case were determined within 0.01%. Indeed, the solution did not appear 
to be highly sensitive to how far inside the element the nodes are moved. Moving them from 
r]  = 0.8 to q = 0.95 yielded similar results, where the local variable q = 1 denotes the corner. 
The condition number of the matrix became very high and the solution accuracy degraded only 
when the nodes were moved closer to the corner. However, such an approach is cumbersome 
for mesh refinement studies when triangular elements are used, especially when some of the 
triangular elements have the sides at an angle to the edge. The nodes can be moved inwards by 
arbitrarily assigning them to one of the two adjacent elements. However, this arbitrariness 
renders a uniform mesh refinement meaningless. 
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Approaches # 4  and # 5  were not tried since they reduce the local accuracy significantly, thus 
undermining the overall idea of using quadratic elements. 

Although it was shown by Gray36 to work in the 2D case, approach #6  yielded a matrix 
with very high condition number in our 3D test cases irrespective of how far the extra collocation 
nodes were placed outside the domain. Although this approach is appealing from the theoretical 
point of view, its implementation appears to be difficult owing to the high sensitivity to the 
placement of the nodes. 

Of the many approaches discussed so far, the discontinuous element approach # 3b performed 
the best. However, it does not permit uniform mesh refinement, which is a key to determining 
numerical convergence. Note that the above discussion has pertained to using the boundary 
collocation method in which the integral equation is required to be satisfied at the collocation 
node. It is well known in both the FEM and BEM that in such a method the accuracy of the 
numerical solution depends greatly on the location of the collocation nodes. The experience with 
approaches # 3 and # 6 has surely supported this. It is therefore clear that if the errors at the 
collocation nodes are averaged, sensitivity to the nodal location will be reduced. This averaging 
scheme, for example, can be implemented by weighting the integral equation by a weighting 
function. Therefore a Galerkin formulation appears to be well suited for the application and 
was tried as approach #7. 

Galerkin boundary element method 

In the Galerkin formulation the integral equation (3) is weighted by the interpolation function 
4%: 

It is important to point out the difference between the collocation and Galerkin formulations. 
The difference is that in the collocation formulation the integral equation is expressed with 
reference to the nodes at  which the unknown variable (u or q )  is sought. In the Galerkin 
formulation the integration of the integral equation is numerically evaluated at exterior 
collocation nodes which do not have to coincide with the variable nodes. The collocation nodes 
are usually the locations of Gauss points. Figure 6 shows examples of the collocation nodes in 
both formulations. At first glance it may appear that the Galerkin formulation requires much 
more computational effort. As shown in the one-element example problem, only six collocation 
nodes are used in the collocation nodes and the integral equation is evaluated six times. In 

Figure 6. Location of the collocation nodes (marked by crosses); variable nodes are marked by circles: (a) collocation 
formulation; (b) Galerkin formulation 
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comparison, 16 collocation nodes are used in the Galerkin formulation. For each variable node 
the integral equation has to be evaluated 16 times. Altogether, 96 evaluations are required! 
However, in practice, at each collocation node the contribution of the integral equation to each 
of the six variable nodes is determined. Thus only 16 evaluations of the integral equation are 
needed. Therefore this example shows that although the Galerkin formulation requires more 
computation than the collocation formulation, the computational formulation, the computa- 
tional load increase is not too large, typically about threefold. 

NUMERICAL IMPLEMENTATION 

The numerical implementation of the Galerkin BEM technique in the collocation formulation 
is straightforward. In the existing algorithm for the collocation formulation only the weighting 
by the weighting function needs to be implemented to switch over to the Galerkin formulation. 
However, an additional modification is required. The adaptive subdomain integration scheme 
introduced in our previous paper2' was found to successfully remove the near singularities in 
the non-singular integrations. In essence, the integration domain was subdivided into sub- 
domains, with the length of the subdomain being halved during each subdivision (see Figure 7). 
The process of subdivision was continued until the sum of the integrals in the subdomains agreed 
with the integral evaluated in the parent domain within a convergence criterion (typically lo-' 
of the normalized sum of the components in a row). 

In the collocation BEM scheme all the collocation nodes were on the edges or at the corners 

for isopammetric element 
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1 \ 

Figure 8. Subdivision used in singular integration, with the cross denoting the collocation node. Singular integration 
is performed in subdomains 1-3 and non-singular integration is performed in subdomains 4-7 

of the element. The singular integration by polar co-ordinate transformation was found to 
perform very well. In the Galerkin BEM technique the collocation nodes are distributed inside 
the element. At some locations the collocation nodes are very close to the edge or the corner. 
Clearly, the singular integration scheme developed was not sufficient to handle the internal 
collocation node and needed to be modified. 

First, the scheme of subdividing the domain into three singular integration subdomains was 
tried but was found to yield errors of the order of 1%, expecially in cases where the collocaiton 
nodes are close to the edge of the element. A subsequent numerical investigation showed that 
in such cases some of the subdomains are very elongated. It was found that as a rule an element 
aspect ratio of greater than eight will introduce errors in the calculation of the area of over 2%. 
For such large element aspect ratios increasing the number of Gauss points in the singular 
integration did not improve the accuracy significantly, since the Gauss points are mostly 
populated towards the centre of the subdomain. 

A modified singular integration scheme was used as depicted in Figure 8. With this scheme 
it is possible to control the accuracy in the integration of any arbitrary function. It is in principle 
similar to the non-singular subdivision scheme. In essence, the integration domain is subdivided 
into two groups of subdomains. In the first group singular integration is performed within the 
subdomain. In the second group non-singular integration is performed within the subdomain. 
The error in the non-singular integration scheme is monitored and further subdivisions are 
carried out until convergence is achieved. On the other hand, the convergence in the singular 
integration scheme is achieved by increasing the number of Gauss points. 

RESULTS AND DISCUSSION 

Case 1. Convergence studies in smooth problems 

The example problem of flow past two rigid spheres in an unbounded domain was first 
considered in order to study the convergence of the Galerkin BEM technique. Results were 
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Figure 9. Mesh used for studying spherical suspensions (24-element for the unit cell and 32-element for the sphere) 

compared with the analytic solutions.33 In discretizing the surface, triangular elements were used 
which allowed easy local mesh refinement at points where large gradients of stresses were 
anticipated. A typical mesh is shown in Figure 9. 

For flow past a sphere in an unbounded domain the Stokes law is applicable and the drag 
force is given by FD = 67cpUa,, where U is the far-field velocity and a, is the sphere radius. 
For flow past a particle of arbitrary shape or past many particles the Stokes law is modified to 
give F D  = 67cpUa, R ,  where a, is the radius of the sphere with the same volume as the particle 
and R is a dimensionless drag ratio describing the effect of particle shape and particle-particle 
interactions. Similarly the dimensionless rotational velocity is defined as a* = wa,/U. 

The convergence of the technique was studied using mesh refinement. We studied the case of 
flow past two nearly touching spheres, which is considered to be a numerically difficult 
As seen in Table 11, the error in the drag ratio (and thus the translational velocity) decreased 
from 3% using the coarse mesh to less than 0.4% using the fine mesh. The fact that we even 
obtained convergence is attributed to the use of the subdivision integration schemes. As seen, 
the relative error in the calculation of the rotational velocity was higher than that of the 
translational velocity, but nonetheless convergence was achieved at all gap sizes. 

Mesh refinement was used to improve the numerical efficiency. Since high stresses exist in the 
interparticle or particle-wall gap, elements in the gap region were locally refined. Based on the 
uniformly spaced 32-element mesh, locally refined meshes of 48 and 64 elements were generated. 
As shown in our previous paper,” using the 48-element locally refined mesh yielded the same 
accuracy as the 128-element uniform mesh but required only a fraction of the CPU time. 

Case 2. Suspension of spheres 

the sphere concentration: 
For a dilute suspension of spheres Einstein39 proved that the viscosity depends linearly on 

where prel is the relative viscosity, also called the reduced viscosity, defined as the ratio of the 
effective viscosity of the suspension to the viscosity of the suspending fluid, and V,  is the 
concentration of spheres in the suspension expressed as a volume fraction. Since this relationship 
was derived for a dilute suspension, various high-order corrections to it have been proposed. 
Several corrections can be found in the classic book by Happel and Brenner.33 

To verify the second-order Galerkin BEM, the problem of a suspension of spheres in shear 
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Table 11. Flow past two nearly touching spheres using the Galerkin BEM with isoparametric 
elements 

Condition Rotational 
Gap/dia Elements number Drag ratio Error velocity 

0.0 1 OOO 8 
32 
48 
64 

Exact 

0.00245 8 
32 
48 
64 

Exact 
0-00050 8 

32 
48 
64 

Exact 

O~OOO 10 8 
32 
48 
64 

Exact 

1.61 x 105 
5.84 x lo6 
8.60 x lo6 
2.54 x 10' 

1.61 105 
5.84 x lo6 
8.68 x lo6 
4.13 x lo8 

1.61 x 105 
5.84 x lo6 
8.69 x lo6 
3.65 x lo8 

0.68470 
0.70877 
0.71033 
0-71068 
0.7 1264 

0.68324 
0.70749 
0.70952 
0.71059 
0.7 129 1 
0.68286 
0.707 17 
0.70934 
0.71079 
0.7 14 14 
0.68278 
0.707 10 
0.70930 
0.71085 
0.71533 

- 0.02794 
-0.00387 
- 0.0023 1 
-0.00196 

- 0,02967 
- 0.00542 
-0.00339 
-0.00232 

- 0.03 128 
- 0.00697 
- 0.00480 
-0.00335 

- 0.03255 
- 0.00823 
- 0*00603 
- 0.00448 

0.10939 
0.09754 
0.08959 
0.08732 
0.08793 
0.10997 
0.09654 
0.08561 
0.07863 
0.077 17 
0.1 101 1 
0.09624 
0.08440 
0.07498 
0.06708 
0.1 1014 
0.096 18 
0.08414 
0.074 1 3 
0.05908 

Error 

0.02 146 
0.0096 1 
0.00 166 

- O~OoO6 1 

0.03280 
0.0 1937 
0.00844 
0.00146 

0.04303 
0.029 16 
0.01732 
0.00790 

0.05 106 
0.03710 
0.02506 
0.01 505 

flow was studied. Length was scaled by the larger dimension of the particle and time was scaled 
by the inverse of the imposed strain rate. A single sphere was used which was placed in the 
centre of the cell. Figure 9 shows the typical 24-element mesh used for the unit cell. For 
convenience a cubic unit cell was used in this study, but the BEM offers the flexibility of choosing 
any geometry for the unit cell. To change the concentration of the suspension, we chose to vary 
the size of the sphere relative to a fixed size unit cell. The motion of the sphere was calcualted 
directly from solving the mobility matrix G. The resulting viscosity of the suspension was 
calculated using Batchelor's formalism. 

Owing to the homogeneity of shear flow, there is no translational velocity. As seen in Table 
111, an eight-element mesh was initially used for the sphere and was found to give an 11% error 
on the viscosity coefficient in equation (19). The large error was traced to the fact that the sphere 
volume was approximated with a 15% error using the eight-element mesh. Upon correcting for 
the volume, the error in the viscosity coefficient was reduced to about 3.9%. The error on the 
rotational velocity is so small that a reliable convergence order could not be determined. Based 
on the viscosity coefficient from the first two meshes, the convergence order was determined to 
be 2.9. (Note that the error using the fine mesh was so small that the numerical error was masked 
by the computer truncation error.) Therefore the actual convergence order was above 2.9. The 
32-element mesh was selected for use in the rest of this study as the best compromise between 
accuracy and CPU requirements. 

Two ways of implementing the periodic conditions were tested in this study. In the first case 
the periodic boundary conditions were the same as those used by Tran-Cong et al.5*22 In essence, 
the shear flow studied here is a periodic flow in two directions bounded by two solid parallel 
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Table 111. Uniform mesh refinement results on the motion and viscosity of a suspension of spheres in shear 
flow in the x,-direction. The sphere volume fraction was 0.01. Periodicity was prescribed in the x2- and 

x,-directions only 
~~~~~~ ~ ~ 

Viscosity coefficient before Viscosity coefficient after 
Elements used w2 volume adjustment volume adjustment 

8 on sphere, 12 on unit cell 0.4995 2.21 1 
32 on sphere, 48 on unit cell 0.5001 2.476 
128 on sphere, 192 on unit cell 0.5OOO 2.497 

2,598 
2.513 
2.500 

0 
Y 

- periodicity in 3 directions - periodicity in 2-directions 

0.45 - 

0.0 0.5 1.0 1.5 2.0 2.5 
nar . 
Y._..l . 

0 10 20 30 
volume fraction of spheres x 100 

Figure 10. Rotational velocity of a sphere in the unit cell of a suspension 

I 

plates. As shown by the 'jagged' curve in Figure 10, the rotational velocity decreases as the 
concentration increases, indicating that the motion is suppressed by the sphere-wall interaction. 
In the very dilute limite where Einstein's approximation holds, the rotational velocity approaches 
asymptotically a value of 0.5000 k 00001, compared with the exact value of 0.5. In comparison, 
the asymptotic value obtained by Tran-Cong et al.' using constant elements was 0502. 

From the particle extra stress the 'instantaneous effective' suspension viscosity can be 
determined. It can be seen from Figure 11 that in the dilute limit the slope of the viscosity-concen- 
tration curve is 2500 k 0001, compared with the exact value of 2500. The dependence of the 
shear component of the particle extra stress was similar to that observed by Tran-Cong er al. ' 
Also as reported by them, there was no normal stress difference over the whole concentration 
range. Indeed, the individual normal components in the particle extra stress tensor were 
negligible. Note that at high concentrations the simulation result is probably not realistic owing 
to the use of a highly structured unit cell (containing only a single sphere) to approximate a 
concentrated suspension in which the interparticle spacing is irregular. 
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3 
0.06 

0 10 20 30 40 

volume fraction of spheres x 100 

Figure 1 1 .  Effective viscosity of the sphere suspension 

In the second case the periodic boundary conditions were applied in all three directions. The 
sphere was shown to be rotating at a velocity of only slightly below 0 5  for the whole range of 
concentration studied. At the highest concentration studied, V,  = 0 3 8 ,  the rotational velocity is 
about 0.4994. This is consistent with the result of Nunan and Keller,40 who showed that the 
angular velocity of the sphere should be exactly half of the curl of the average velocity, 
independently of the volume fraction. As noted by Nunan and Keller, this is the same angular 
velocity that the sphere will experience in an unbounded domain of shear flow with the same 
shear strain. In other words, in each unit cell the sphere is spinning as if it is alone. 

In this case the shear particle extra stress actually followed Einstein's predicted value quite 
closely over a larger range of concentrations. In other words, owing to the absence of the wall 
effect, the extra stress is smaller in this case. Also, significant normal stress, at the level of as 
much as 30% in magnitude of the shear stress in the case of V,  = 0.38, was observed. However, 
both the first and second normal stress differences were zero. (The normal stress arises from 
squeezing the fluid in the gap between the two spheres.) As explained by Brady and Bo~sis ,~ '  
normal stress differences results from an angular anisotropy in the sphere configuration, which 
was absent in this study. 

Two conclusions can be drawn from this excursion into the rheology of spherical suspensions. 
First, the numerical solution for the unit cell is sensitive to the implementation of the periodic 
boundary conditions. Usually periodicity in all three directions is desired. In order to achieve 
this, Tran-Cong et u1.5,22 had to resort to using multiple (two, three or four) layers of spheres 
between the solid plates. Even then the result using four layers was still 2% different from that 
using three layers, thus indicating that some effect of the wall was still present. The implementa- 
tion used in this study represents a significant improvement over the approach taken by 
Tran-Cong et ul. and was used for the rest of the study. Secondly, the wall effect is shown to 
be very significant. 
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Case 3. Flow of ellipsoidal particle suspensions 

Jeffery4' studied the particle motion and rheology in a suspension of ellipsoidal particles. To 
describe the angular velocities, the spherical co-ordinate system with solid angles # and 8 is 
used (see Figure 12). For shear flow the rates of change of these angles (4 and 4) with respect 
to time, which completely describes the three-dimensional particle rotation, are 

where rp is the ellipsoid aspect ratio and i is the shear rate. 
For an ellipsoid, according to equation (20), the motion is periodic. 4 has maxima at # = 0 

and n. The corresponding minima of 4, which are not zero, occur at # = n/2 and 3x12. Thus 
the ellipsoid spends most of its time in an orientation close to the flow direction. At every 
half-period it experiences a rapid change in the orientation by tumbling 180". Integration of 
equation (20) shows that the rotation of the spheroid is periodic, with the angle $ depending 
on only rp and the shear strain f t :  

with a period of rotation 

Y 
In a suspension where there are many fibres, a description of the orientation states of individual 

particles is impractical. Advani and Tucker43 showed that the most concise and compact way 
to describe the orientation distribution is through the moments of the distribution function, e.g. 
the second-order orientation tensor 

uj = X,Y 

Figure 12. Fibre orientation in the fixed co-ordinate system ( X , ,  X,, X3), where X ,  is the polar axis and 4 = 0 when 
the fibre is oriented at the flow direction 
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and the fourth-order orientation tensor 

where p is a unit vector related to 8 and 4 that describes the orientation and $(p) or $(O, 4, t )  
is the distribution function, which is defined as the probability density of finding a particle 
oriented within a small solid angle sin 8 d8 d 4  around the direction (8 ,4 )  at time t. 

Tucker4’ developed an expression for the 
particle extra stress in an arbitrary flow as a function of the ellipsoid orientation distribution 
and concentration : 

Based on the earlier work by Hinch and 

where A,  B and C are shape coefficients that depend only on the particle aspect ratio and 
concentation and not on the orientation state of the particles. 

In this study three values of aspect ratio were studied: 18, 36 and 54. For convergence studies 
only the ellipsoid with rp = 18 in a dilute suspension was considered. In general, more elements 
are needed to approximate a spheroid than a sphere. Typically either a 24-element or a 
40-element mesh was used. The size of the particle can be set arbitrarily as long as the interparticle 
spacing is consistent with the requirement that the fibre should rotate freely inside the box. 
Using too short a particle will make it very small relative to the unit cell. Using too long a 
particle will violate the assumption of a dilute suspension. Based on these considerations, a ratio 
of fibre length to the length of the box of 045 was used originally. At that length a fibre of 
aspect ratio 18 occupies only about 003% of the unit cell volume. As an numerical experiment 
the fibre length was extended to twice the original volume while maintaining the same aspect 
ratio of 18. In other words, the ratio of fibre length to unit-cell length was increased from 0.45 
to 0.90. As seen in Table IV, the resulting coefficients are essentially the same. 

First the effect of mesh size and ratio f fibre length to unit-cell length was investigated. Figure 
13 shows the rotational velocity of the bifre when it is oriented in the shear plane, i.e. 0 = 4 2 .  
In this case only 4 is non-zero. The velocity is presented on a logarithmic scale to show that 
the maximum and minimum rotational velocities differ by a ratio of r i .  As can be seen, the 
predicted motion using the 24-element and 40-element meshes is indistinguishable from the 

Table IV. Coefficients in the particle extra stress equation determined from multiple regression 

Aspect Elements on Equation 
Case Formulation ratio ellipsoid L,/L,,, used A B C 

I Galerkin 
I1 Galerkin 
I11 Galerkin 
IV Galerkin-collocation 
V Galerkin-collocation 
VI Galerkin-collocation 
VII Galerkin-collocation 

Exact 

18 
18 
18 

18 
18 
36 
54 
18 
36 
54 

24 0.45 u(P) 73.64 
40 0.45 JP? 73.86 
40 0.90 U# 75.42 
24 0.45 u(P) 73.76 
40 0.90 =1 w 76.07 

u(Pf 234.3 40 0.90 
40 0.90 af2 463.4 t f  

73.82 
229.7 
454.6 

0.03 2.024 
0.04 2,003 
0.06 2.003 
0.04 2.088 
0.08 2.001 
0.2 2.000 
0.4 2.000 
0.017 2.037 
0.006 2.012 
0403 2.006 
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BEM 

973 
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0 2 

Figure 13. Rotational velocity of an ellipsoid under simple shear flow of a unit strain rate. The BEM results were 
obtained using the Galerkin formulation with a 40-element mesh on the ellipsoid and a 24-element mesh on the unit cell 

analytic results. In fact, the performance of the Galerkin BEM technique surpassed the original 
expectation of the study by providing high accuracy even from such coarse meshes. 

From the particle extra stress the coefficients can be determined. As shown in Figure 14, 
coefficient A is the dominant one and is about three to four orders of magnitude higher than 
coefficient B. Indeed, as the aspect ratio increases, A increases and B decreases. At the higher 
values of aspect ratio B is so small that the influence of B on the stresses can be safely neglected. 
On the other hand, coefficient C remains nearly constant over the whole range of aspect ratios 

Coefficient Value 1 1 
.o:/ 1 
.oo 1 

0 20 40 60 80 1 

Aspect Ratio 

Figure 14. Analytic (-) and asymptotic (-O-) values of the coefficients in the particle extra stress equation 
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and has a value of just slightly over two. Note that the asymptotic values obtained by Hinch 
and using the slender body approximation are within 15% of the exact values at rp = 10 
and within 1% when rp = 50. In this study the three unknowns A, B and C were determined 
by multiple regression of the data at five different ellipsoid orientations. Note that for particles 
that lie in the shear plane, there are only three non zero stress components, ciPj, criPj and &‘j, 
and that coefficient C appears only in the in-plane shear stress: 

(+P) - 
1 1  - PF:i)12(2’4a1112 + 2 B a A  

12  - PF: i ) I2 [24 ,22  + & l l  + a22) + Cl, 
o(Pf 22 - - PFIlj12Wa1222 + 2Ba12). 

(27) a(P) - 

As seen in Table IV, the agreement with the BEM solution is excellent, with typical errors of 
about 2%. Figure 15 shows the profile of the three non-zero components of the particle extra 
stress. 

40 - 
20 - 

2 2 0  - 
-20 - 
40- 

0 

Figure 15. Particle extra stress as a function of the in-plane angle: 0, BEM solution using the Galerkin formulation 
with 40 elements on the ellipsoid; - , JeKery’s prediction 



ANALYSIS OF PERIODIC 3D VISCOUS FLOWS 975 

So far, the results discussed have focused on having a single particle in the unit cell. To check 
if the unit-cell approach and the periodic boundary conditions had been implemented correctly, 
two unit cells were fused together and a fibre placed in each half-cell with identical orientation 
(0 = n/2, 4 = 7c/2). The choice of 4 = n/2 was based on the observation that accuracy at small 
rotational velocities was more difficult to achieve than at high rotational velocities. The 
rotational velocities of the two fibres were within 0.15%, indicating that the implementation of 
periodicity was c0rrect.j’ In this case the ratio of fibre length to unit-cell length was 0.45. The 
rotational velocity from each fibre in the fused box was 3.6% higher than that from the single 
fibre in a box, thus indicating a slight interaction even at such a dilute suspension. On the other 
hand, the particle extra stress from each fibre in the fused box was only 0.02% higher than that 
from the single fibre in a box. 

Finally, it is worth mentioning that the condition number for the many cases discussed so far 
was of the order of 109-1010. Despite such high numbers, the solution was stable in all cases. 

Case 4. Galerkin-collocation method 

From the above analyses it can be seen that the Galerkin formulation gives very accurate 
results but the CPU requirement is high. One way to reduce the CPU requirement is to evaluate 
the integral equations on the particle using the collocation formulation. Recall that the use of 
the Galerkin formulation was motivated by the need to handle corners. Since the particle does 
not have corners, the Galerkin formulation is not needed. The collocation formulation, which 
requires one-third to one-quarter the CPU required by the Galerkin formulation, is thus 
attractive for evaluating the integral equations at collocation nodes on the particle. 

To check the validity of the scheme, the same five orientations of the ellipsoid of aspect ratio 
18 were evaluated using the mixed Galerkin-collocation formulation. The results are given in 
Table IV. The errors were higher in this case as expected, but not by much. The error in the 
coefficients was about 3.7% in the 24-element mesh and 2.8% in the 40-element mesh. Thus this 
scheme offers a significant saving in the CPU requirement while maintaining a reasonable level 
of accuracy. Since the Galerkin-collocation formulation results were not too far from the 
Galerkin formulation, the CPU consideration favours the use of the former formulation. 

Case 5. Effect of cylindrical shape of fibres on suspension properties 

In reality the fibres are cylindrical instead of ellipsoidal in shape. Hence it is of interest to 
understand how Jeffery’s equations can be extended to a more general particle shape. One 
noticeable difference between cylinders and ellipsoids is that cylinders have blunt ends whereas 
ellipsoids have round ends. Intuitively one would expect that if the fluid is flowing in the fibre 
direction, the blunt end will provide excess drag. Also, during rotation a cylinder will have a 
larger moment than an ellipsoid of the same major and minor semi-axes owing to the larger 
cross-section at the ends. 

In their experimental study of rods Goldsmith and Mason46 defined an equivalent ellipsoidal 
axis rato re for cylindrical particles with actual axis ratio r p ,  based on the period of rotation of 
the cylinders. They found that the ratio of re/rp decreased from 072 to 057 as r p  increased from 
18 to 130. In his study on the slender body approximation Burgers4’ found theoretically that 
re/rp was about 0.74. Thus equation (20) can be used to describe the motion of a cylinder in 
shear flow by substituting re for r p .  Little work has been done to determine if the rheological 
model for ellipsoids, equation (26), can be modified for cylinders through the use of the same 
concept of re .  
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Equation (20) shows that the rotational velocity is a function of both the aspect ratio (in this 
case re is used instead of rp) and the orientation. Specifically, the second term in this equation, 
prevalent for 4 around 4 2 ,  is proportional to 1/(1: + 1) and is thus very sensitive to the value 
of re .  Hence a single value at 4 = n/2 is sufficient to determine re ,  since the first term is zero. 
Physically speaking, since the period of rotation is controlled by the small rotational velocities 
around 4 = 4 2 ,  this simple determination of re is logical. 

As shown in Figure 16, the equivalent ellipsoidal aspect ratio was found to agree within 4% 
with both the experimental value by Harris and Pittman4* and the prediction by The 
high accuracy in determining I, is a reflection of the high accuracy of the Galerkin formulation 
in capturing the small values of the velocities. As shown in Figure 17, Burgers' prediction 

Asymptotic - Cox 
BEM 

0 10 20 30 40 50 60 

r P  

Figure 16. Equivalent ellipsoidal ratios for cylinders 

A 

100 - 

/ Burgers 

based on re 

10 ! 
0 10 20 30 40 50 60 7( 

rP 

Figure 17. Values of coefficient A in a suspension of cylinders 
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underpredicts the extra stress by about 26% at rp = 18 to 20% at rp = 54. It seems that the 
error from Burgers’ prediction drops at higher r,-values, but this point was not exploited in the 
study. A comparison between the numerical value and the value of coefficient A calculated on 
the basis of re showed that the latter had an error of greater than 50%, which was increasing 
with rp. Therefore this scheme should be avoided since it grossly underestimates the suspension 
viscosity. Based on these observations, it can be concluded that neither Burgers’ prediction nor 
the equivalent ellipsoidal ratio concept provides a good approximation for the particle extra 
stress. 

The rheology of a suspension of curved ellipsoids was also studied by Chan3’ but is omitted 
here for clarity. 

Case 6. Flow through ajixed bed ofJibres 

The Galerkin BEM in conjunction with the unit-cell approach can also be used to study flow 
through a porous medium. Since the details of the pore geometry are generally unknown or too 
complex to account for, it is customary to describe the flow using average quantities which can 
be observed macroscopically. One such description is Darcy’s law, which states that the flow 
rate is proportional to the pressure gradient Vp multiplied by the ratio between the fibre bed 
permeability tensor, k and the viscosity: 

U = (l/p)k * Vp, (28) 

where U is the average fluid velocity. Darcy’s law has a long history of use, especially in soil 
mechanics for a wide variety of porous media. Equation (28) is empirical, but its use is justified 
partly owing to its agreement with experimental measurements. 

The prediction of k in such configurations is beyond the capabilities of the current theoretical 
models. Hence the permeability tensor is often determined experimentally. The problem of flow 
past a periodic network of cylinders is similar to the Stokes flow in a unit cell with cylinders in 
it. There are two differences between these two cases: (a) the boundary conditions are the pressure 
drop across the unit cell walls; (b) the fibres will run typically across the whole length of the 
unit cell, at least in one direction, thus making the mesh generation more complicated. 

For benchmarks the cases of cross-flow and parallel flow in a square array were studied. By 
convention the fibre is considered to be in the x,-direction. A typical mesh used is shown in 
Figure 18. From the simulation the dimensionless quantity Fi/iii was calculated, where F is the 
force and ii is the average fluid velocity. This quantity is in essence the flow resistance, thus the 
inverse of permeability. As shown in Figure 19, the calculated flow resistances for cross-flow 
agreed within 5% with the series expansion results of Sangani and AcrivosS0 over the fibre 
volume fraction range from 0.2 to 0.5. The higher error at high fibre volume fraction is expected, 
since the cylinder is very close to the unit-cell wall, introducing higher numerical errors. Hence 
for higher volume fractions a finer mesh is needed. For parallel flow it is seen that the agreement 
in the permeability with the series expansion results of Drummond and TahirS1 was within 4%. 
Again the accuracy starts to drop towards the higher fibre volume fractions, indicating a need 
for mesh refinement. 

For the case in which the mat 
predict the effective permeability 
are additive.52 Thus 

is made of layers with different permeabilities, it is possible to 
by assuming that the permeabilities from the individual layers 

i = l  / i = l  
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(b) (C) 

Figure 18. Mesh used in the study of cross-flow: (a) the periodic unit cell; (b) the coarser mesh; (c) the finer mesh 

Cross Flow (BEMI 

0.0 0.2 0.4 0.6 
fiber volume fraction 

Figure 19. Flow resistance in flow past a square array of cylinders 

where ki and hi are the permeability and the thickness in the ith layer respectively and Nlayer is 
the total number of layers. 

As shown in Figure 20, the agreement was very good at lower volume fractions but started 
to deviate around a fibre volume fraction of 0.35. At a fibre volume fraction of 0.50 the 
permeability was different by 10%. Intuitively it is reasonable that at low fibre volume fractions 
the cross-flow and parallel flow do not interact much but act on their respective half-cells nearly 
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,001 ! 
0.10 0.20 0.30 0.40 0.50 

Fiber Volume Fraction 

Figure 20. Permeability for the combined flow as a function of fibre volume fraction 

Table V. Distribution of flow in combined 
parallel-cross-flow (fluid flows in the direc- 

tion perpendicular to the page) 

fraction 

0.20 0.56 0.44 
0 3 5  0.57 043 
0.50 0.6 1 0.39 

independently. Thus equation (29) provides a good approximation. However, at high volume 
fractions the fluid in the low-permeability (cross-flow) half-cells starts to flow towards the 
high-permeability (parallel flow) half-cell. The net effect of this additional flow is to increase the 
permeability. This intuition is supported by examining the microhydrodynamics. From a tracer 
partcile study it can be clearly seen that a fraction of the fluid was moving from the 
low-permeability half-cell to the high-permeability half-cell. Such cell-to-cell motion was in- 
dicated by the ratio of the total flow in the high-permeability half cell. As seen in Table V, the 
parallel flow half-cell accounted for 56% of the total flow at a fibre volume fraction of 0.20, 
while this ratio increased to 61% at a fibre volume fraction of 0.50. Equation (30) does not take 
cross-flow into account, hence deviations from the equations at  higher fibre volume fraction are 
expected. 
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